Nonagon quadruple systems: existence, balance, embeddings

نویسندگان

  • Paola Bonacini
  • Mario Gionfriddo
  • Lucia Marino
چکیده

A cycle of length 9 of vertices (x1, x2, . . . , x9), in the cyclical order, with the three edges {x1, x4}, {x4, x7}, {x1, x7} is called an NQ-graph or also a nonagon quadruple graph. A nonagon quadruple system, briefly NQS, of order v and index λ is an NQ-decomposition of the complete multigraph λKv. An NQS is said to be perfect if the inside K3, generated by the vertices x1, x4, x7, forms a Steiner triple system; it is said to be balanced if all the vertices have the same degree. In this paper, the spectrum of NQSs, the spectrum of perfect NQSs and the spectrum of balanced NQSs are completely determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings of Surfaces into 3-space and Quadruple Points of Regular Homotopies

Let F be a closed orientable surface. We give an explicit formula for the number mod 2 of quadruple points occurring in any generic regular homotopy between any two regularly homotopic embeddings e, e : F → R. The formula is in terms of homological data extracted from the two embeddings.

متن کامل

The last twenty orders of (1, 2)-resolvable Steiner quadruple systems

A Steiner quadruple system (X, B) is said to be (1, 2)-resolvable if its blocks can be partitioned into r parts such that each point of X occurs in exactly two blocks in each part. The necessary condition for the existence of (1, 2)-resolvable Steiner quadruple systems RSQS(1, 2, v)s is v ≡ 2 or 10 (mod 12). Hartman and Phelps in [A. Hartman, K.T. Phelps, Steiner quadruple systems, in: J.H. Din...

متن کامل

The existence of resolvable Steiner quadruple systems

A Steiner quadruple system of order v is a set X of cardinality v, and a set Q, of 4-subsets of X, called blocks, with the property that every 3-subset of X is contained in a unique block. A Steiner quadruple system is resolvable if Q can be partitioned into parallel classes (partitions of X). A necessary condition for the existence of a resolvable Steiner quadruple system is that v = 4 or 8 (m...

متن کامل

Unitary embeddings of finite loop spaces

In this paper we construct faithful representations of saturated fusion systems over discrete p-toral groups and use them to find conditions that guarantee the existence of unitary embeddings of p-local compact groups. These conditions hold for the ClarkEwing and Aguadé-Zabrodsky p-compact groups as well as some exotic 3-local compact groups. We also show the existence of unitary embeddings of ...

متن کامل

On 2-ranks of Steiner triple systems

Our main result is an existence and uniqueness theorem for Steiner triple systems which associates to every such system a binary code | called the \carrier" | which depends only on the order of the system and its 2-rank. When the Steiner triple system is of 2-rank less than the number of points of the system, the carrier organizes all the information necessary to construct directly all systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2016